

CO₂-ABSCHEIDUNG

BEI

BIOGAS FORUM BAYERN DR. UWE KIKILLUS 27. SEPTEMBER 2018

SEPARATING INTO TWO PUBLICALLY-TRADED CO'S

WATER

ELECTRICAL

A Leading Global Water Company Focused on Smart, Sustainable Water and Fluid Processing Applications PROTECTION

A High-Performance Electrical Company Focused on Improving Utilization, Lowering Costs, and Maximizing Customer Uptime

Two new companies in May 2018

Pentair Overview with FS Highlights

THE NEW PENTAIR

Our capabilities and resources span the globe

Leading partner in CO₂ and biogas upgrading

HAFFMANS & UNION: COMBINING 60 YEARS OF PROCESS TECHNOLOGY

PENTAIR GAS SOLUTIONS

0% METHANE LOSS & CO₂ ADDITIONAL REVENUE

PENTAIR Biogas Forum Bayern - Dr. Uwe Kikillus - September 27, 2018

REFERENCES BIOGAS UPGRADING AND BOLT-ON CO2

Our installed plants can fuel 133,000 homes or 275,000 cars

Summer 2018 CO₂ crisis in the news

Source: BevTech Europe 2018, AirLiquide, G. Constantin

The background of the CO₂ crisis

Installed CO₂ plants in Europe

- Total installed capacity: ~ 20 000 tpd
- About 100 CO₂ plants
- Nominal oversupply with regional imbalances
- Sources for CO₂ plants by weight

Fertilizer market

- High cost of NG in Europe vs. RoW
- 30 % fertilizer production overcapacity ww.
- Fertilizer imports to Europe increased to 45 %
- Extended maintenance periods from March to July

European CO₂ crisis

- From March to July 2018 about 7 fertilizer sources were in partial production or stopped at a given time
- The level of CO₂ stored by IGC (in plants, trailers or at customer storages) has decreased
- In June about 10 CO₂ sources were simultaneously down triggering the worst CO₂ crisis in Euope

Source: BevTech Europe 2018, AirLiquide, G. Constantin

Reduction of fertilizer production is the root cause

CO₂ applications

THE FUTURE: DRY ICE – POWER-TO-GAS – POWER-TO-LIQUID

Raw CO₂ supply shortage can be solved

During summer 2018 a shortage in raw CO_2 caused serious problems for the beverage industry. Innovative solutions are reachable short, medium and long term:

Solutions are available and new ones to come

EIGA DOC 70/17: Food-Grade CO₂ from biogas

Revised EIGA DOC 70 released in February 2017

(EIGA = European Industrial Gases Association)

Biogas from anaerobic digestion listed as carbon dioxide source

- Biogas from energy crop is handled similar to yeast-based fermentation (ethanol)
- Biogas from **bio-waste** digestion or co-digestion requires greater care in the evaluation
- [Biogas from landfills with variety of waste types requires extensive risk assessment]

Risk assessment process for AD plants for food & beverage CO₂

- The food safety risk analysis (HACCP) includes the digester biogas process
- Final product carbon dioxide is always compliant with the Appendix A
- Complete on-line or complete batch analysis of CO₂ before supply to customer
- A **food safety management system** (e.g. ISO 22000) is strongly recommended for the carbon dioxide plant
- Compliance of the AD plant (and feedstock) with the EU regulations for animal by-products

ISBT Bulk Carbon Dioxide Quality & Food Safety Guidelines under Revision

EIGA

EIGA DOC 70/17: Food-Grade CO₂ from biogas

APPENDIX A:

EIGA LIMITING CHARACTERISTICS

FOR CARBON DIOXIDE TO BE USED IN BEVERAGES FOR SOURCE SPECIFICATION³

Component	Concentration
Assay	99.9% v/v min.
Moisture	<u>20</u> ppm v/v max
Ammonia	2.5 ppm v/v max.
Oxygen	30 ppm v/v max.
Oxides of nitrogen (NO/NO2)	2.5 ppm v/v max. each
Non-volatile residue(particulates)	10 ppm w/w max.
Non-volatile organic residue (oil and grease)	5 ppm w/w max.
Phosphine ***	0.3 ppm v/v max
Total volatile hydrocarbons (calculated as methane)	50 ppm v/v max. of which 20 ppm v/v max non-methane hydrocarbons.
Acetaldehyde	0.2 ppm v/v max.
Aromatic hydrocarbon	0.02 ppm v/v max.
Carbon monoxide	10 ppm v/v max.
Methanol	10 ppm v/v max.
Hydrogen cyanide*	0.5 ppm v/v max
Total sulfur (as S) **	0.1 ppm v/v max.
Taste and odour in water	No foreign taste or odour
Appearance in water	No colour or turbidity
Odour and appearance of solid CO2 (snow)	No foreign odour or appearance

APPENDIX B:

Possible trace impurities by source type (Excluding air gases and water)

The source types are generic sources and there are variations in individual processes. Therefore, the supplier should assess whether or not all of the components listed are applicable to the actual plant.

Component	Combustion	Wells/ Geothermal	<u>Fermentation</u> /bioethanol AD (purely energy <u>crops)</u>	<u>Anaerobic</u> <u>digestion</u> <u>(waste)</u>	Hydrogen or Ammonia	Phosphate Rock	Coal Gasification	Ethylene Oxide	Acid Neutralisation	<u>Vinyl acetate</u>
Aldehydes	\checkmark	\checkmark	1	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark
Amines	\checkmark				\checkmark					
Benzene	\checkmark	\checkmark	√	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark
Carbon monoxide	\checkmark	\checkmark	√	V	\checkmark	1	1	\checkmark	\checkmark	\checkmark
Carbonyl sulphide	\checkmark	\checkmark	√	V	\checkmark	1	1		\checkmark	
Cyclic aliphatic hydrocarbons	\checkmark	1		V	\checkmark		\checkmark	\checkmark		\checkmark
Dimethyl sulphide		\checkmark	√	\checkmark		\checkmark	\checkmark		\checkmark	
Ethanol	\checkmark	\checkmark	√	V	\checkmark		1	\checkmark		\checkmark
Ethers		\checkmark	√	\checkmark	\checkmark	1	\checkmark	\checkmark		\checkmark
Ethyl acetate		\checkmark	√	\checkmark			\checkmark	\checkmark		\checkmark
Ethyl benzene		\checkmark		\checkmark	\checkmark		\checkmark			\checkmark
Ethylene oxide							\checkmark	\checkmark		
Halocarbons	\checkmark			\checkmark			\checkmark	\checkmark		\checkmark
Hydrogen cyanide	\checkmark						\checkmark			
Hydrogen sulphide	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Ketones	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark
Mercaptans	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark
Mercury	\checkmark	\checkmark					\checkmark			
Methanol	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark
Nitrogen oxides	\checkmark		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	
Phosphine						√				
Radon		\checkmark				\checkmark			\checkmark	
Sulphur dioxide	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	
Toluene		\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark
Vinyl chloride	\checkmark						\checkmark	\checkmark		\checkmark
Volatile hydrocarbons	\checkmark	1	1	V	\checkmark		\checkmark	\checkmark		\checkmark
Xylene		√	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark

MEMBRANE TECHNOLOGY

ECO

Biogas upgrading – ADVANCED plus

MEMBRANE GAS SEPARATION

Compressed raw Biogas Retentate - High pressure Biomethane

NL 2011: 450 Nm3/h biogas to grid & green CO₂

7 YEARS OF LIQUID CO₂ RECOVERY

BIOGAS UPGRADING – COMPACT & ENCLOSED

ADDITIONAL REVENUE WITH CO₂-BOLT-ON

FOR VARIOUS UPGRADING PROCESSES – LARGE INSTALLED BASIS

AMINE TECHNOLOGY

We supply the most robust and innovative amine-based biogas upgrading plants. We have decades of experience in amine technologies for various purposes.

AMINE BASED BIOGAS UPGRADING

BASED ON OVER 60 YEARS OF EXPERT KNOWLEDGE

KALUNDBORG BIOENERGI

5000 Nm³/h raw biogas with heat recovery to AD

BIGADAN BUILT THE BIGGEST BIOGAS PLANT IN DK – COMMISSIONED IN 2018

PENTAIR Biogas Forum Bayern - Dr. Uwe Kikillus - September 27, 2018

KALUNDBORG BIOENERGI

No. of Concession, Name

- Capacity 5000 Nm3/h
- Amine Based Unit
- Biogas upgrading
- 0.1 % methane slip (can be upgraded to zero)

SAFEGUARDING THE CO₂ QUALITY

Cleaning steps of raw biogas before membrane biogas upgrading:

<u>Optional biological H_2S removal (bulk removal of H_2S)</u>: Reduction of H_2S levels from few 1000 ppm to 30-50 ppm levels

Gas scrubber/chiller Removal of ammonia/water solubles (partial removal of VOC)

Activated Carbon

Removal down to max. 1-5 ppm of all contaminations :

- H_2S
 - VOC (terpenes, ketones)

Success factors in practice

Operational training Automated process control Periodic 3rd party testing SOP's: Absorbents replacement Calibration procedure Maintenance Remote Process Support & SLA

Cleaning steps of raw CO₂ during liquefaction:

<u>Compression to 18 bar (g)</u> -> Temperature increase to > 110°C -> sterilization of CO₂

<u>Regenerative activated carbon</u> Removal of last ppm contaminations to ppb level

<u>Liquefaction, strip column</u> Removal of all non-condensable gases: CH₄, N₂, H₂, O₂,

2016 UK MARKET BIO-CO₂ & BIO-METHANE

REGIONAL CO₂ DEMAND + DISTANT CO₂ SOURCE = FEASIBLE BIO-CO₂ PROJECT

CO₂ from biogas – quality & experience

FOOD SAFETY RISK ASSESSMENT WITH INDUSTRIAL GAS COMPANY

- Food safety risk assessment completed in 2016
- Inline / complete batch analysis before supply (30 vs. 9 components for industrial CO₂)
- 2000⁺ EIGA samples since 2015
- CO₂ complies with food-grade requirements
- Test result: < 2 bacteria / dm³
- Initial deviations caused by:
 - H₂S
 - Moisture
 - Hydrocarbons (propane)
- Approx. 99 % of samples now OK

NL EXPERIENCE

- First plant in operation since 2011
- Mainly bio-waste, vegetable & food waste
- Higher level of impurities -> process control
- CO₂ goes via industrial gas companies and OCAP pipeline mainly to greenhouses
- Demand driven by greenhouses

UK EXPERIENCE

- Energy crops / unprocessed vegetable matter
- High quality -> low risk
- CO₂ goes via industrial gas companies to food & beverage and industrial applications
- Shortage in conventional sources -> imports
- Regional demand & distant industrial sources

GERMANY, DK, USA, SOUTH AFRICA and PHILIPINES WILL FOLLOW

CO₂ Entscheidungungskriterien

ABNEHMER:

- Industriegasunternehmen oder lokaler Abnehmer?
- Werden die Biogas-Substrate akzeptiert?
- Regionale Nachfrage / Wettbewerb
- Mehrwert Flexibilität und Nachhaltigkeit
- Wer übernimmt: Qualitätssicherung Lagerung Transport

EINNAHMEN/KOSTEN:

- Marktpreis CO₂
- Mehrwert CH₄-Rückgewinnung
- Senkung der Treibhausgas-Emmissionen
- Investitionskosten (auch Tank/QS)
- Energiekosten
- Finanzierung
 - Personal / Wartung

GRÜNES CO₂ ALS MEHRWERT

PENTAIR Biogas Forum Bayern -

Conclusion

During summer 2018 a shortage in raw CO_2 caused serious problems for the beverage industry and other CO_2 consumers. Innovative solutions are reachable short, medium and long term:

- Low hanging fruits in solving the CO₂ shortage periods include extended storage and further utilization of biogas upgrading with the two value streams biomethane and food-grade CO₂
- Biogas represents a growing source of green CO₂ as the global biogas market grows.
- CO₂ from biogas has been approved for food & beverages by EIGA and is under review by the ISBT
- Some countries (NL, UK, ...) have started using the biogas CO₂
- As other raw gas sources are declining, decentralized investments offer the most stable CO₂ supply
- Looking ahead, new and environmental conscious solutions are coming up however the technical and commercial feasibility is still uncertain

CO₂ shortage is avoidable – the solution is individual

Thank you

HAFFM

AIAIN

LU

Dr. Uwe Kikillus Category Leader – Gas Solutions

uwe.kikillus@pentair.com +31 6 2971 4082

BIOSENSE – ONLINE VOC SENSOR

FEED STOCKS, PRE-TREATMENT & OPEX

"KNOW YOUR HIDDEN COSTS"

BIOSENSE=>OPTICAL ABSORBTION SPECTROSCOPY

*Safeguard membrane performance and service Life *Reduce bio-methane production Costs *Reduce Operational Costs for AC *Increase uptime

BACK TO START

"OPTIMIZING THE TOTAL BIOGAS PROCESS"